Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1662670

ABSTRACT

Hypoxic conditions induce the activation of hypoxia-inducible factor-1α (HIF-1α) to restore the supply of oxygen to tissues and cells. Activated HIF-1α translocates into the nucleus and binds to hypoxia response elements to promote the transcription of target genes. Cathepsin L (CTSL) is a lysosomal protease that degrades cellular proteins via the endolysosomal pathway. In this study, we attempted to determine if CTSL is a hypoxia responsive target gene of HIF-1α, and decipher its role in melanocytes in association with the autophagic pathway. The results of our luciferase reporter assay showed that the expression of CTSL is transcriptionally activated through the binding of HIF1-α at its promoter. Under autophagy-inducing starvation conditions, HIF-1α and CTSL expression is highly upregulated in melan-a cells. The mature form of CTSL is closely involved in melanosome degradation through lysosomal activity upon autophagosome-lysosome fusion. The inhibition of conversion of pro-CTSL to mature CTSL leads to the accumulation of gp100 and tyrosinase in addition to microtubule-associated protein 1 light chain 3 (LC3) II, due to decreased lysosomal activity in the autophagic pathway. In conclusion, we have identified that CTSL, a novel target of HIF-1α, participates in melanosome degradation in melanocytes through lysosomal activity during autophagosome-lysosome fusion.


Subject(s)
Cathepsin L/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Melanosomes/metabolism , Animals , Cathepsin L/genetics , Cell Hypoxia/genetics , Cells, Cultured , Gene Expression Regulation , Melanocytes/metabolism , Mice , NIH 3T3 Cells
2.
Curr Opin Virol ; 50: 159-170, 2021 10.
Article in English | MEDLINE | ID: covidwho-1363948

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiologic agent that causes Coronavirus Disease 2019 (COVID-19) pandemic, is a newly emerging respiratory RNA virus with exceptional transmissibility and pathogenicity. Numerous COVID-19 related studies have been fast-tracked, with the ultimate goal to end the pandemic. Here we review the major stages of SARS-CoV-2 infection cycle in cells, with specific emphasis on essential host factors. Insights into the cell biology of SARS-CoV-2 infection have accelerated the development of host-directed therapeutics, as shown by dozens of clinical trials evaluating COVID-19 treatments using host-targeting compounds.


Subject(s)
COVID-19/etiology , SARS-CoV-2/physiology , Cathepsin L/physiology , Humans , RNA, Viral/biosynthesis , SARS-CoV-2/genetics , Virus Assembly , Virus Internalization , COVID-19 Drug Treatment
3.
Front Cell Infect Microbiol ; 10: 589505, 2020.
Article in English | MEDLINE | ID: covidwho-1000069

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemics is a challenge without precedent for the modern science. Acute Respiratory Discomfort Syndrome (ARDS) is the most common immunopathological event in SARS-CoV-2, SARS-CoV, and MERS-CoV infections. Fast lung deterioration results of cytokine storm determined by a robust immunological response leading to ARDS and multiple organ failure. Here, we show cysteine protease Cathepsin L (CatL) involvement with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 from different points of view. CatL is a lysosomal enzyme that participates in numerous physiological processes, including apoptosis, antigen processing, and extracellular matrix remodeling. CatL is implicated in pathological conditions like invasion and metastasis of tumors, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, viral infection, and other diseases. CatL expression is up-regulated during chronic inflammation and is involved in degrading extracellular matrix, an important process for SARS-CoV-2 to enter host cells. In addition, CatL is probably involved in processing SARS-CoV-2 spike protein. As its inhibition is detrimental to SARS-CoV-2 infection and possibly exit from cells during late stages of infection, CatL could have been considered a valuable therapeutic target. Therefore, we describe here some drugs already in the market with potential CatL inhibiting capacity that could be used to treat COVID-19 patients. In addition, we discuss the possible role of host genetics in the etiology and spreading of the disease.


Subject(s)
COVID-19/complications , Cathepsin L/physiology , Pandemics , Respiratory Distress Syndrome/enzymology , SARS-CoV-2/physiology , Acute Kidney Injury/etiology , Amantadine/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Chloroquine/therapeutic use , Cysteine Proteinase Inhibitors/therapeutic use , Genetic Predisposition to Disease , Heparin/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Lysosomes/enzymology , Molecular Targeted Therapy , Receptors, Virus/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/ultrastructure , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Teicoplanin/therapeutic use , Virus Internalization , COVID-19 Drug Treatment
4.
FASEB J ; 34(6): 7253-7264, 2020 06.
Article in English | MEDLINE | ID: covidwho-175986

ABSTRACT

Drug repurposing is potentially the fastest available option in the race to identify safe and efficacious drugs that can be used to prevent and/or treat COVID-19. By describing the life cycle of the newly emergent coronavirus, SARS-CoV-2, in light of emerging data on the therapeutic efficacy of various repurposed antimicrobials undergoing testing against the virus, we highlight in this review a possible mechanistic convergence between some of these tested compounds. Specifically, we propose that the lysosomotropic effects of hydroxychloroquine and several other drugs undergoing testing may be responsible for their demonstrated in vitro antiviral activities against COVID-19. Moreover, we propose that Niemann-Pick disease type C (NPC), a lysosomal storage disorder, may provide new insights into potential future therapeutic targets for SARS-CoV-2, by highlighting key established features of the disorder that together result in an "unfavorable" host cellular environment that may interfere with viral propagation. Our reasoning evolves from previous biochemical and cell biology findings related to NPC, coupled with the rapidly evolving data on COVID-19. Our overall aim is to suggest that pharmacological interventions targeting lysosomal function in general, and those particularly capable of reversibly inducing transient NPC-like cellular and biochemical phenotypes, constitute plausible mechanisms that could be used to therapeutically target COVID-19.


Subject(s)
Antiviral Agents/pharmacokinetics , Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Drug Repositioning , Endosomes/virology , Hydroxychloroquine/pharmacology , Lysosomes/virology , Niemann-Pick Disease, Type C/pathology , Pneumonia, Viral/drug therapy , ADAM17 Protein/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Biological Transport , COVID-19 , Cathepsin L/physiology , Endocytosis , Endosomes/drug effects , Endosomes/physiology , Glycopeptides/pharmacology , Glycopeptides/therapeutic use , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/physiology , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Lipids/metabolism , Membrane Microdomains/physiology , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolism , Oxysterols/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/physiology , Triazoles/pharmacology , Triazoles/therapeutic use , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL